Infinity Supercritical

Supercritical Fluid Extraction Search Engine - Infinity Supercritical CO2 Extraction Publications Search Engine - Cannabis Industry - Publications On Demand - Real Time Browser Display

This SDR - Spinning Disc Reactor and Cavitation Reactor search was updated real-time via Filemaker on:

SDR - Spinning Disc Reactor and Cavitation Reactor Contents List

Previous Page View | Next Page View

Search Completed. Publication Name:

105.pdf

Page Number: 001

PDF Text:

ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange

Yu Lim Chen,1 Li-Chung Kuo,1 Min Lun Tseng,2 Hao Ming Chen,1,3 Chih-Kai Chen,3 Hung Ji Huang,4 Ru-Shi Liu,3,5 and Din Ping Tsai1,2,6,*

1Department of Physics, National Taiwan University, Taipei 10617, Taiwan

2Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan 3Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

4Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 30076, Taiwan 5rsliu@ntu.edu.tw

6Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan *dptsai@phys.ntu.edu.tw

Abstract: A low-cost and efficient photocatalytic reactor for environmental treatment and green technology was presented. ZnO nanorods firmly growing on polycarbonate optical disk substrate are generally perpendicular to the substrate as the immobilized photocatalyst of the spinning disk reactor. The photocatalytic efficiency and durability of the ZnO nanorods are effectively demonstrated.

©2013 Optical Society of America

OCIS codes: (160.4236) Nanomaterials; (240.6670) Surface photochemistry; (220.0220) Optical design and fabrication; (160.6000) Semiconductor materials.

References and links

1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).

2. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).

3. N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).

4. L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).

5. H.M.Chen,C.K.Chen,C.C.Lin,R.S.Liu,H.Yang,W.S.Chang,K.H.Chen,T.S.Chan,L.F.Lee,andD. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971– 21980 (2011).

6. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).

7. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).

8. Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).

9. H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

10. W.C.Lin,T.S.Kao,H.H.Chang,Y.H.Lin,Y.H.Fu,C.T.Wu,K.H.Chen,andD.P.Tsai,“Studyofa super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).

11. H.M.Chen,C.K.Chen,R.S.Liu,C.C.Wu,W.S.Chang,K.H.Chen,T.S.Chan,J.F.Lee,andD.P.Tsai,“A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).

12. J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).

13. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).

14. K. Okazaki, D. Nakamura, M. Higashihata, P. Iyamperumal, and T. Okada, “Lasing characteristics of an optically pumped single ZnO nanosheet,” Opt. Express 19(21), 20389–20394 (2011).

15. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).

#184847 - $15.00 USD Received 7 Feb 2013; revised 6 Mar 2013; accepted 6 Mar 2013; published 15 Mar 2013

(C) 2013 OSA 25 March 2013 / Vol. 21, No. 6 / OPTICS EXPRESS 7240

PDF Image:

 Supercritical Fluid Extraction 105.pdf Page 001
SUPERCRITICAL CO2 EXTRACTOR FOR SALE: 5L, 10L and 20L - 2,000 psi Complete Supercritical Fluid Extraction System - closed loop. Our systems are made at our fabrication shop in the state of Washington. Systems available: 5L, 10L, 20L, 100L, and larger custom. Typical build time is 2 weeks. This is not a Apeks Supercritical or Waters Supercritical CO2 Fluid Extraction System. We believe it is a better system, since we use 1/2 inch tubing for the CO2 flow, which is 4 times the flow rate of a Apeks, and up to 64 times the flow rate of a Waters system. We believe the result is faster processing time and better yield from increased exposure to CO2 solvent. Perfect for extraction of terpenes, trichomes, and Cannabinoids. Supercritical CO2 Fluid Extraction is a art, and the operator must have experience and training to obtain results. Go to website

Search Engine Contact: greg@infinitysupercritical.com